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Abstract 

 
 

  The purpose of this research was to design and build appropriate broadband high 

impedance ground planes for surface mount antennas. Broadband, low-profile antennas, 

such as spirals, log-periodics, and bow-ties, suffer substantially in gain and bandwidth 

performance when they are brought close to a conducting surface. Thus, when standard 

broadband antenna designs are conformally placed on vehicle bodies, they can no longer 

achieve the high data rates required by modern communication. A simple remedy for this 

has been to place an absorber lined cavity behind the antenna to preserve some 

bandwidth, at the expense of reduced gain. However, recently introduced high impedance 

ground planes have novel electromagnetic features that have been shown to improve 

conformal antenna performance without the detrimental effects of absorber losses.  

In this research, first, square patch ground planes for narrowband antennas were 

built and analyzed. Second, a log-periodic broadband antenna was analyzed with square 

and circular patch ground planes. Finally, two novel triangular-patch high impedance 

ground plane designs as a meta-substrate for a broadband bow-tie antenna were 

presented. Consequently, the high impedance ground plane provided a suitable platform 

for the bow-tie with removing the undesired effects of a regular metallic ground plane. 

Results indicated that the novel designs have better gain than the bow-tie in free space, 

and the bow-tie over a metallic surface. 
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CONSTRUCTION AND TESTING OF  
BROADBAND HIGH IMPEDANCE GROUND PLANES  

(HIGPS) FOR SURFACE MOUNT ANTENNAS 
 
 

1. Introduction 

 

The idea of using an artificial material for electromagnetic application is not new, 

but dates back to Jadagis Chunder Bose in 1898. His experiments on constructed twisted 

elements, recently known as chiral media, may be the first studies on metamaterials. 

Artificial dielectrics were explored for lightweight microwave antennas in the 1950s and 

1960s (Alu and others, 2006:5). 

These artificial materials, such as high impedance ground planes and 

electromagnetic band-gap structures, can be used to provide several advantages for 

antenna applications, due to their unusual electromagnetic features, such as suppression 

of surface waves and reflection of electromagnetic waves in phase (Munk, 2000; 

Joannopoulos and others, 1995; Rahmat-Samii and Mosallaei, 2001:506-564; Sievenpiper 

and others, 1999b:1245-1248; Yablonovitch, 1987:2059). This breakthrough brought 

considerable attention for many antenna applications. 

Today, antennas are used in many applications, such as wireless internet, wireless 

communication, air traffic control, global positioning systems, and military weapon 

guidance and control systems.  

Antennas are also vital for modern military forces to control the entire 

electromagnetic spectrum as desired. Broadband antennas, which provide more 
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operational frequency band, are more useful for military applications in controlling the 

emissions over the electromagnetic spectrum. Moreover, broadband antennas are more 

difficult to electronically attack by enemies. Therefore, antennas which operate on wider 

frequency bands are of greater interest to the military. 

Broadband, low-profile antennas, such as spirals log-periodics, leaky-waves, and 

bow-ties have well known. These antennas provide wider operative frequency bands, 

than basic antennas (Balanis, 2005). But these antennas cannot maintain their broadband 

properties when brought near conductive surfaces, such as the metallic surface of an air 

plane or an Unmanned Aerial Vehicle (UAV). 

  Aircraft have several different antennas for communication, such as navigation, 

radar, and threat warning. Tactical Air Navigation (TACAN), Global Positioning System 

(GPS), Very High Frequency (VHF), and Ultra High Frequency (UHF) antennas are 

some of the examples. All of these antennas operate in different frequency bands. If a low 

profile broadband antenna could be developed to work without losing its broadband 

properties on a conductive surface, this broadband antenna could replace antennas on 

aircraft. One antenna, instead of three or more antennas, reduces the weight of the air 

vehicle, which is much more important for UAVs. One broadband antenna also can 

reduce the negative aerodynamic effects of antennas mounted on the vehicle. Therefore, 

broadband antennas are of primary interest to the designers of these types of systems. 

The purpose of this chapter is to outline the research which focused on developing 

high impedance ground planes for surface mount antennas, and address the background, 

problem statement, research questions,objectives, and methodology applied.  
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1.1. Background 

 

A high impedance ground plane (HIGP) is a metallic ground plane that has the 

potential to improve the performance of many antennas. This novel ground plane 

suppresses electromagnetic surface waves, and also reflects electromagnetic waves in 

phase. For these unusual features, HIGPs function as perfect magnetic conductor-like 

(PMC-like) structures which do not truly exist in nature. HIGPs have special 

electromagnetic features, such as reflecting incident waves in phase, and absorbing 

surface waves. These man-made structures are made of well known perfect electric 

conductor (PEC) materials, but they behave as PMC materials. Potential advantages of 

the HIGPs include improved antenna patterns, doubled antenna gain, and cheaper 

fabrication of conformal antennas (Sievenpiper and others, 1999a:2059, Yang and 

Rahmat-Samii, 2003a:2691). 

 

1.2. Problem Statement 

 

So far, metals have been used as electric ground planes. The use of a metal as an 

electric ground plane has some operative difficulties. Metals are nearly PECs. The main 

feature of a PEC surface is reflecting electromagnetic waves completely, but with a 180-

degree phase change  in the E-field. 

 PEC ground planes are also not suitable for surface-mounted antennas. When an 

antenna is mounted on a conductive surface of an air vehicle, opposite-directioned image 

currents occurred in the metallic surface of the air vehicle cancelling the currents on the 
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antenna. Moreover, reflections from such conductive skins severely deteriorate the 

operation bandwidth, matching, and gain. The standard remedy for this problem was to 

place the antenna on an absorber cavity, which is too thick to be mounted on a surface of 

air vehicles (Sievenpiper and others, 1999b:1245-1248). 

Another remedy for this problem is using a thin metamaterial ground plane.  The 

HIGP as a thin metamaterial ground plane design can be a suitable replacement for the 

absorber cavity while maintaining broadband characteristics of the antenna. An antenna 

which is located directly above a HIGP has no current cancellation problem, but has 

higher gain, better directivity and performance than usual antennas. 

 

1.3. Research Questions and Objectives 

 

Is it possible to build a low profile surface-mounted broadband antenna for an air 

vehicle? This research attempts to develop a high impedance ground plane with a low 

profile conformal broadband antenna. After the discovery of PMC-like HIGPs, it is 

possible to build a low profile surface-mounted antenna. The primary goal of this 

research is to develop an operative HIGP and a surface mounted broadband antenna.  

How can an optimum HIGP design be developed for the low profile broadband 

antenna? The first step is to develop an HIGP which has a larger band gap and 

bandwidth. Certain design parameters for the optimum HIGP design are used to build the 

most efficient HIGP-antenna system. 

This research intends to develop a more efficient antenna and ground plane 

system which is useful for many electromagnetic applications, especially for air vehicles. 
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Optimization and improvement studies are objectives. The performance improvement of 

the final design when conformed to the fuselage of a real air vehicle can be a further 

objective. 

  

1.4. Methodology 

 

HIGP designs are built in the microwave laboratory of the Air Force Institute of 

Technology (AFIT). The milling machine is used for the construction. After building the 

first HIGP samples, characteristics of every design are analyzed by via electromagnetic 

measurements.  

What measurements should be done for the designed HIGP? The band gap and 

the bandwidth of the HIGP should be measured to determine the features of the HIGP 

design. The determination of band gap and the bandwidth of HIGP lead us to the 

determination of the appropriate broadband antenna. One of the purposes of this research 

is to be able to find the widest band gap. The reflection phase of the HIGP design is 

measured by using a focus beam system or a network analyzer. An anechoic chamber is 

also used for the determination of the surface currents. 

What kind of a broadband antenna should be used for the designed HIGP? The 

second step is to build a broadband antenna with operative frequencies similar to the band 

gap of HIGP. Therefore some broadband antennas such as spiral, bow-tie, and log-

periodic antennas, are used for the optimum HIGP-antenna system. Finally, by mounting 

the broadband antenna on the ground plane, the first overall system is developed. After 
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the first system design, different geometric-shape HIGPs are built to develop more 

efficient antenna and ground plane systems. 

How can the HIGP-antenna system be measured? A network analyzer is used for 

return loss measurements and an anechoic chamber is used for radiation pattern of the 

HIGP-antenna system. Measurement techniques are detailed in chapter III–Methodology 

and the measurement results are analyzed in chapter IV–Results and Analysis. 

 

1.5. Thesis Overview 

 

Chapter 2–Literature Review presents the background theory for this research. A 

review of the metamaterials, HIGPs and also some basic electromagnetic background for 

understanding the features of the HIGPs are provided.  

Chapter 3–Methodology identifies the methods developed in this research. 

It indicates how HIGP designs are built for certain frequencies, and also provides detailed 

measurement techniques for surface wave measurements and phase measurements.  

Chapter 4–Results analyzes the results of the measurements and gives an overall 

comparison of HIGP designs to PEC and PMC. The results are also indicated in  figures 

so as to be able to determine limitations of the HIGP and antenna system. 

Chapter 5–Conclusion summarizes the results and also provides recommendations 

for future studies.   

 

 



2. Literature Review 

 

2.1 Chapter Overview 

 

The purpose of this chapter is to present the basic electromagnetic background for 

understanding the features of the HIGP in the research, and to cover what researchers 

have achieved up to this point. A review of the metamaterials and HIGPs is also 

provided. 

 

2.2 Historical Perspective 

 

From narrowband to broadband, many different kinds of antennas are used  daily. 

Scientists continue to develop more efficient, useful, smaller and less expensive 

broadband antennas (Mosallaei and Sarabandi, 2004; Bell and Iskander 2004; Broas and 

others 2005). The standard broadband antennas, which have been designed so far, such as 

spiral, log periodic, sinuous, and leaky wave antennas, rapidly lose their broadband 

properties when brought in close proximity to a conducting surface.  The standard 

remedy has been to cut into the ground plane to create an absorber lined cavity behind the 

broadband element in an effort to preserve some bandwidth. If a novel metamaterial is 

used to develop a smaller surface-mounted broadband antenna, thin metamaterial designs 

can be suitable replacements for the absorber cavity, while maintaining broadband 

characteristics of the antenna element.  

 7



There have been many studies in the high impedance ground plane area. The term 

“High Impedance Ground Plane”  was first used in 1999 by Sievenpiper. Sievenpiper 

developed a metallic structure that behaves like a perfect magnetic conductor 

(Sievenpiper 1999). Before Sievenpiper’s HIGP, there were many studies on 

metamaterials in the literature ( Brown and others, 1993; Kominami and others, 1985; 

Veselago, 1968; Yablonovitch 1987).  

 

2.3 Metamaterials (MTMs) 

 

The term “metamaterials” consists of two words,  “meta” which means “beyond” 

in Greek and “materials”. Metamaterials (MTMs) are new artificial materials with 

unusual electromagnetic properties that are not found in natural materials. All natural 

materials such as glass or diamonds have positive electrical permittivity, magnetic 

permeability, and an index of refraction. But these new artificially fabricated materials, 

which are also called negative-index materials (NIM), double negative (DNG) materials,  

or left-handed (LH) materials have negative  parameters (Kshetrimayum and others, 

2004:44-46). 

With these unusual material parameters, new kinds of low profile antennas and 

microwave components / devices can be created for the wireless communication and 

defense industries. Using MTMs offers novel possibilities of guiding radio frequency 

(RF) flux to the receiver coil, permitting a clear image to be obtained where none might 

be otherwise detectable  (Kshetrimayum, 2004:44-46). 
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2.3.1 Introduction and History of Metamaterials 

 

What is metamaterial? With most of the natural materials being used by  

scientists, and the eagerness to find better media for electromagnetic applications, 

scientists were forced to fabricate structures or use composite materials with physically 

resemble response functions that do not naturally occur or are not readily available in 

nature (Engheta and Ziolkowski, 2006).  

Electromagnetic MTMs are artificially homogeneous electromagnetic structures 

with unusual properties not readily available in nature (Caloz and Itoh, 2006). MTMs 

have excellent electromagnetic features, such as reflecting incident waves in phase, and 

absorbing surface waves (Yang and Rahmat-Samii, 2003a:2691-2703). 

The idea of artificial materials for electromagnetic applications has a long history 

dating back to Jadagis Chunder Bose in 1898. He worked and experimented on the 

constructed twisted elements that exhibit properties, known today as chiral characteristics 

(Alu and others, 2006:23-36). After Bose’s discovery, artificial dielectrics were explored 

in the 1950s and 1960s for lightweight microwave antenna lenses. In 1967, Russian 

physicist Viktor Veselago theoretically investigated the substances with simultaneously 

negative values of permittivity ε  and the permeabilityμ , and concluded that they may 

exist .  

More than 30 years later, the first left-handed (LH) material was conceived and 

demonstrated by Smith and colleagues at the University of California, San Diego. The 

LH material was artificially made, and not a natural substance (Caloz and Itoh, 2006). 
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In the 1990s, the development of electromagnetic band gap (EBG) structured 

materials, single-negative (SNG) and double-negative (DNG) materials, and their 

fascinating properties have driven the interest in MTMs (Engheta and Ziolkowski, 2006). 

Much research has been done in this area and several terms have been defined for 

these artificial materials. Left-handed (LH), double-negative (DNG), negative-refractive-

index (NRI), backward-wave, Veselago medium, and negative phase velocity medium 

are all used to define these material substances (Caloz and Itoh, 2006). 

MTMs are classified with the help of the constitutive parameters of 

electromagnetic materials which are the permittivity ε  and the permeabilityμ . Relative 

permittivity rε  and relative permeability rμ of an electromagnetic material is related to 

the free space permittivity 0ε   and permeability 0μ  by 

   

                                            (1.1) 12
0 10.854,8/ −== rεεε

                                                (1.2) 7
0 10.4/ −== πμμμ r

And the wave number k is defined by 

 .r rk ω ε μ= ±       (1.3)  

Wave number is also related to the refractive index in some references, which is 

defined by   

 rrn με .±=        (1.4) 
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Figure 1. Four combinations of permittivity and permeability. 

 
 

In equation 1.4, the sign of the relative permittivity rε  and relative permeability 

rμ is used to classify MTMs. Four combinations in the pair ( rε , rμ ) are (+,+), (+,-), (-,+),  

and (-,-). 

In Figure 1, four combinations of material parameters are shown (Alu and others, 

2007:25). The real permittivity (ε ) is on the x-axis and the real permeability (μ ) is on 

the y-axis. 

The combination of (+,+) is called Double Positive (DPS), 

The combination of (-,+) is called Epsilon (ε ) Negative (ENG), 

The combination of (+,-) is called Mu (μ ) Negative (MNG), 

The combination of (-,-) is called Double Negative (DNG) (Alu and others, 

2006:23-36). 

The combinations of the first three, (+/+), (+/-), and (-/+), are well known in 

conventional materials, but the fourth combination, (-/-), with simultaneously negative 

permittivity and permeability, are novel materials which do not exist in nature. These 

materials are called double-negative materials (Caloz and Itoh, 2006). 
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Figure 2. Permittivity-permeability (ε ,μ ) and refractive index (n) diagram. 

 

In Figure 2, four combinations of the permittivity (ε ), the permeability (μ ), and 

the refractive index (n) are shown (Caloz and Itoh, 2006). In region I, both ε  and μ  are 

positive. Isotropic dielectrics are examples of this region. The double-negative materials 

are shown in region III. In this region both   ε  an  d μ  are negative. Veselago materials 

are given as examples. 
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2.3.2 Double-Negative (DNG) Metamaterials 

 

Double-negative materials are an example of electromagnetic composite media,  

such as chiral materials, omega materials, wire media, bianisotrophic media, linear and 

nonlinear media. Local and nonlocal media have been studied by many scientists all over 

the world. 

The idea of complex materials, in which both permittivity and the permeability 

possess negative real values at certain frequencies, has received considerable attention. 

Vaselago  investigated the plane-wave propagation in a material whose permittivity and 

permeability  were assumed to be simultaneously negative. He demonstrated that in such 

a medium, a monochromatic uniform plane wave in the direction of the Poynting vector 

is antiparallel to the direction of the phase velocity. This is contrary to the case of the 

plane-wave propagation in conventional simple media (Engheta and Ziolkowski, 2006).  

Vaselago called these materials left-handed (LH) to express that these types of 

materials would allow the propagation of electromagnetic waves with in the electric field, 

magnetic field, and with the phase constant vectors building a left-handed triad, 

compared to conventional materials where the triad is known to be right-handed (RH) 

(Caloz  and Itoh, 2006).  

 

Veselago predicted some basic features of LH materials as follows: 

a. Necessary frequency dispersion of the constitutive parameters. 

b. Reversal of Doppler Effect. 

c. Reversal of Vavilov-Cerenkov radiation. 
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d. Reversal of boundary conditions relating to the normal components of the 

electric and magnetic fields at the interface between a conventional right-

handed (RH) medium and a LH medium. 

e. Reversal of Snell’s law. 

f. Subsequent negative refraction at the interface between a RH medium and a 

LH medium. 

g. Transformation of a point source into a point image by a LH slab. 

h. Interchange of convergence and divergence effects in convex and concave 

lenses, respectively, when the lens is made LH. 

i. Plasmonic expression of the constitutive parameters in resonant-type LH 

media (Veselago, 1968). 

 

2.3.3 Electromagnetic Bandgap (EBG) Metamaterials 

 

After the 1980s and 1990s, artificial electromagnetic materials, such as 

electromagnetic band-gap (EBG) structures, photonic crystals, and double negative 

(DNG) structures have been investigated. These structures are also classified as MTMs 

that have special electromagnetic features such as reflecting incident waves in phase and 

absorbing surface waves. These man-made structures are made of well known perfect 

electric conductor (PEC) materials but  they behaved as a perfect magnetic conductor 

(PMC) material. These novel features of the EBG motivated scientists to study antenna 

and propagation fields (Yang and Rahmat-Samii, 2003a:2691-2703). 
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EBG structures have been used for enhancing antenna performance because of the 

frequency band gap of the surface-wave suppression. EBG structures as a ground plane 

are used to achieve low profile broadband antennas that are useful for many antenna 

applications (Yang and Rahmat-Samii, 2003:2691-2703). 

The reflection phase feature of an EBG structure is unusual. The reflection phase 

is defined as the phase of the reflected electric field at the reflecting surface, and it is 

normalized to the phase of the incident electric field at the reflecting surface. The PEC 

reflects the incident plane wave with a 180 degrees reflection phase, while the PMC, 

which does not exist in nature, reflects the incident plane wave in phase. There have been 

many studies to realize a PMC-like structure. Recent studies have indicated that EBG 

structures can satisfy the PMC-like condition in a certain frequency band, in fact that 

EBG structures are more than a PMC surface (Yang and Rahmat-Samii, 2003a:2691).  

The reflection phase of an EBG surface varies continuously from 180 degrees to 

negative 180 degrees versus frequency, where the reflection phase is only 180 degrees for 

a PEC surface or 0 degrees for a PMC surface. This property of the EBG structures 

makes it useful for many electromagnetic applications. One of the potentially important 

applications of this surface is its usage as a ground plane of a wire antenna for a low 

profile design, which is desirable in many wireless communication systems (Yang and 

Rahmat-Samii, 2003a:2691-2703).  

The mushroom-like structures were designed as EBG structures. The mushroom-

like structure is known to have an effective band gap for surface-wave propagation. This 

structure is useful to optimize an antenna radiation pattern (Yang and Rahmat-Samii, 

2003a:2691-2703). 
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2.4 High Impedance Ground Plane (HIGP) 

 

The high impedance ground plane (HIGP) contains two metallic conductors and 

an artificial substrate with the artificial substrate located between two conductors,  and 

two conductors connected to each other by vias.  

In figure 3, 7 by 7 square-shaped HIGP design is shown (Linton and Scanlon, 

2006). The HIGP was designed for use on surface mounted antennas. This has been 

developed with the objective of higher radiation efficiency and compact operation.  

 

2.4.1 Electromagnetic Properties of HIGP 

 

To enable physically small but electrically large antennas at Very High Frequency 

(VHF) and Ultra High Frequency (UHF), a metamaterial high impedance ground plane 

has to be created. The HIGP offers the possibility of high negative permittivity substrates 

over a narrow band, which will make the dimensions of the patch antenna smaller (Linton 

and Scanlon, 2006). 

Radiation incident on the patch antenna will cause surface currents to flow on the 

outer metallic skin patch. For optimum antenna radiation, the substrate thickness for full 

reflection from the ground plane is λ/4 (Sievenpiper, 1999a:2059). This is impossible in 

compact antennas in all frequencies. Only in the highest frequencies can this substrate 

thickness be used. In figure 3, a square patch HIGP is shown (Linton and Scanlon, 

2006:33).  
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Figure 3.  High Impedance Ground Plane: (a) Top View (b) Side  View 

 

 When the frequency gets higher, the thickness of the substrate gets smaller. Over 

a narrow frequency band, however, a HIGP  can be used to make an ultra thin substrate 

which retains the properties of the  λ/4 substrate height separation (Linton and Scanlon, 

2006:32). 

Sievenpiper’s  design of metallic structures as a HIGP has the following 

interesting characteristics over a particular frequency band known as the electronic band-

gap (EBG): 

 

a. It reflects waves in-phase 

b. It does not allow surface currents to propagate 
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These characteristics are novel, since typical metal surface reflects waves with a 

180° phase shift and permits the propagation of alternating currents on the surface 

(Sievenpiper, 1999b:2073). Researches in AFIT using high impedance surfaces as ground 

planes for low-profile antennas has also demonstrated the advantages of such surfaces 

(Golla, 2001; Saville, 2000; Schloer 1999). 

A low-profile antenna such as a patch antenna over a ground plane has some 

design limitations due to the metal ground plane. A metal ground plane acts as a PEC. In 

this case if the patch is brought close to the metal ground plane which behaves as a PEC, 

the image current induced in the metal ground cancels the current in the radiating 

element. To avoid this, the distance between radiating element and ground plane should 

be at least a quarter of a wavelength  (λ/4). This limits the reduction in height of the 

antenna that can be achieved. When the surface currents flowing in the ground reach the 

edge of the metal, they will radiate from the metal causing interference with the intended 

radiated wave. The remedy of these two problem areas is replacing the metal ground 

plane with a HIGP. 

A HIGP is a periodic lattice of horizontal metal patches positioned over a solid 

metal sheet and connected to the sheet by vertical conducting vias. The space between 

patches and the ground plane may be filled with a dielectric substrate for convenience of 

the fabrication. Square patches were chosen for the ground plane in figure 3, however, 

there can be a number of other geometrical shapes and may have a non-periodic array 

pattern. The parameters used to tailor the characteristics of the surface in figure 3 are:  

W: the patch width, 

g:   the gap width between patches,  
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h:   the substrate thickness,  

rε : the substrate permittivity, 

 r:   the via radius. 

 

2.4.2 High Impedance Surface Lumped-Element Approximation 

 

When the dimensions of the lattice are small compared to the wavelength of the 

illuminating energy, the surface can be modeled using lumped-circuit elements, such as a 

parallel LC circuit, as shown in Fig.4 (Sievenpiper, 1999a:2060; Linton and Scanlon, 

2006:34). 

 

Figure 4. Lumped-Element Equivalent Circuit of the HIGP 
 

 

The inductance arises from the current flowing between patches through the vias 

and the capacitance arises from the proximity of adjacent patches (Linton and Scanlon, 

2006:34). At resonance the impedance of a parallel LC circuit is 
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At the resonant frequency the impedance of the surface becomes very high and 

purely real. Over the bandwidth of the surface, centered at the resonant frequency, both 

TE and  TM surface waves are suppressed. At frequencies below the lower band-edge the 

surface impedance is inductive, TM surface waves can propagate, and at frequencies 

higher than the upper band-edge the surface impedance is capacitive and TE surface 

waves can propagate. 

If a HIGP is used as a substrate of an antenna, suppression of surface waves will 

improve the antenna efficiency and reduce the sidelobe level that is caused by the 

diffreaction of surface waves at the edges of the substrate (Yablonovitch, 1994:173). 

When a thick substrate with higher dielectric constant value instead of a HIGP is used to 

increase the bandwidth of the antenna, power losses due to the surface waves become as 

high as 60% of the radiated power (Gonzalo and others, 1999:2132).  

The bandwidth of the HIGP is the frequency range over which the reflected wave 

is in-phase with the incident wave. This occurs when the phase of the reflected wave is 

between 90° and –90°. The bandwidth is also the frequency range over which surface 

currents are suppressed  (Linton and Scanlon, 2006:35). It is defined as 

 

C
LBW

0

1
η

=                (1.7) 
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In equation (1.7), 0η  is the impedance of the incident wave (usually the 

impedance of free-space); approximate values of the capacitance and inductance for the 

HIGP structure shown in figure 3 are : 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ++
= −

g
gWW

C r 2cosh
)1( 10

π
εε

      (1.8) 

 hL 0μ=         (1.9) 

 

Equations (1.7)−(1.9) allow the approximate design of a HIGP using lumped 

elements. It is important to know the effect of each of the design parameters on the 

resonant frequency and bandwidth of the HIGP for an appropriate design (Linton and 

Scanlon, 2006:35).  

 

2.5 Conclusion 

 

Electrically small and efficient antennas are being designed and developed. But to 

improve better antennas make scientists discover novel areas. In this case HIGPs can be 

used to develop more efficient antennas. By using MTMs, physically small but 

electrically large, low-profile antennas can be developed.  The HIGP as a MTMs for 

surface mount antennas let scientists create broadband, low-profile antennas which work 

on conducting surfaces. These broadband, low-profile antennas with high impedance 

ground planes can be used on the surfaces of the unmanned aerial vehicles, aircraft, and 

spacecraft.  
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Chapter 3 Methodology 
 
 

3.1. Chapter Overview 
 
 

The purpose of this chapter is to identify the method to achieve the goal of the research.  

Fabrication of HIGP samples, surface wave measurements, narrowband and broadband antenna 

return loss and gain measurements are detailed. 

 
3.2. Method to Achieve Research Goal 

 
 

In this research, mushroom-like HIGP samples with different elements were analyzed. 

Many techniques were reviewed in the literature to find the most appropriate method for testing 

ground planes and antennas (Brown, 1993; Colburn and Rahmat-Samii, 1990; Compton and 

others, 1987; Golla, 2001; Gonzalo, 1999; Linton, 2006; Yang and Rahmat-Samii, 2003a:2691-

2703). Finally, square patch HIGP samples were designed similarly as in (Yang and Rahmat-

Samii, 2003a) as a starting point. The proportion of the design parameters was taken directly 

from this work, but additionally three different design frequencies were chosen. Square patch 

HIGP samples were designed, built, and analyzed to be able to reach the same results. Thus, we 

could verify our measurements. The experimental measurement results were also compared to the 

simulation results.   

After the fabrication of basic HIGPs, a circular patch hexagonal HIGP, a square patch 

HIGP and two novel HIGP samples were built. These samples were designed and optimized in 

Ansoft’s commercial full-wave solver HFSS (High Frequency Structure Simulator) as another 

research (Dogrul, 2008). The optimized samples were tested and analyzed as a final step.  
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Analysis proceeded in three steps: 

• Surface Wave Measurements 

• Narrowband Antenna Measurements 

• Broadband Antenna Measurements 

 

In the first step, the band gap of surface wave suppression was analyzed by measuring 

surface waves on square patch HIGPs. It’s known that mushroom-like structures have effective 

band gaps for the surface-wave propagation. Identification of the band gap of these structures is 

important to determine the operational frequencies of the desired HIGP/antenna system. 

However, the surface wave band gap of the structure cannot guarantee the effective radiation of 

the low profile antenna alone. Complicated interactions occur between the wire antenna and the 

HIGP surface, and electromagnetic waves are not restricted to surface waves that propagate in the 

horizontal plane (Yang and Rahmat-Samii, 2003a:2691).  

For these reasons, in the second and the third step HIGPs were tested with narrowband 

and broadband antennas. Dipole antennas were chosen for narrowband antenna, since there are 

many studies on dipoles with electromagnetic band gap structures (Kominami, 1985:600-607; 

Sievenpiper, 1999c:1245-1248; Yang and Rahmat-Samii, 2003a:2691-2703). A variety of dipole 

antennas in different lengths were located 0.03 8GHzλ /0.035 8GHzλ /0.04 8GHzλ  over the HIGPs. Thus, 

the radiation performance of each HIGP/dipole antenna was characterized in a far field anechoic 

chamber. 

In broadband antenna measurements, a log-periodic antenna as in (DuHamel and Ore, 

1958:139-151) with two HIGP samples and two bow-tie antenna/HIGP combinations were 

analyzed. First, a square patch HIGP and a circular patch hexagonal HIGP were built for the log-
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periodic antenna. The same measurement techniques as in narrowband antenna measurements 

were applied.  

Second, two novel HIGP designs were tested. Specifically, two different multi-scale 

triangular-patch mushroom HIGP samples with a bow-tie were analyzed. Several bow-ties and 

integrated antennas were reviewed for the fabrication (Kiminami, 2004:152-153; Loi, 1998:137-

140; Rutledge, 1983:550-557; Yang and Rahmat-Samii, 2003b:2936-2946). The sizes and 

periodicities were designed, so that the two samples have band-gaps that appear successively in 

frequency.  

A broadband horn antenna was used for the calibration of the anechoic chamber 

measurements. The frequency band was considered between 2–18 GHz for measurements, 

because the equipment in the laboratory only operates in this frequency band. The calibration 

data was collected twice a day, once at the beginning and once at the end.  
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3.3. Fabrication of HIGP Samples 

 

 Desired HIGP samples were designed by using Isopro Software (v.2.5), and samples were 

built using the T-Tech’s Quick Circuit System. Tools used for the fabrication which are also 

provided by T-Tech, are shown below in Table 1. 

 
Table 1. T-Tech Tool Set  

Drill Bits
(inch) 

Stub Endmills 
(inch) 

0.021 0.015 
0.026 0.020 
0.032 0.031 
0.040 0.040 

 
 

Materials chosen to use for the fabrication were RT/duroid 5880, RT/duroid 5870, 

RT/duroid 6002 and RT/duroid 6010. These materials are teflon based fiberglass high frequency 

laminates which were produced by Rogers Corporation. The permittivity of materials is shown in 

Table 2. 

 
Table 2. Permittivity of High Frequency Laminates  

Material  Name Permittivity
RT/Duroid 5880 2,2 
RT/Duroid 5870 2,33 
RT/Duroid 6002 2,94 
RT/Duroid 6010 10,02 

 
 

For square patch HIGP samples, three main design frequencies, 8 GHz, 10 GHz, and 12 

GHz, were chosen. Design parameters of HIGP samples, such as patch width and gap width, were 

considered proportional to the wavelength of these frequencies.  
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For example, 7 by 7 square patch designs, shown on the first row of figure 5, were built 

proportional to the wave length of 8 GHz. The frame size of the sample was 8GHzλ by 8GHzλ , which 

is 37.5 mm by 37.5 mm. The patch width of the design is 0.12 8GHzλ , which is 4.5 mm, and the 

gap width is 0.02 8GHzλ , which is 0.75 mm. According to design parameters (Yang and Rahmat-

Samii, 2003:2691-2703), the height of 7 by 7 square patch designs should have been 0.75 mm 

(0.02 8GHzλ ) , but since we used RT/Duroid 5880, produced by Rogers Corporation, we had only 7 

different height choices, they were 0.005” (0.127mm), 0.010”(0.254mm), 0.015”(0.381mm), 

0.020”(0.508mm), 0.031”(0.787mm), 0.062”(1.575mm), and 0.125”(3.175mm). For this reason, 

the thickest value of 0.125” (3.175mm) was chosen so as to be able to get better bandwidth and 

band gap. 

 

 
Figure 5. Square Patch HIGP Samples  

λ =25    W=3.0   g=0.5   h=3.175            =2.20rε

10 GHz 
(9 by 9) 

λ =37.5    W=4.5   g=0.75    h=3.175          =2.20rε

λ =30    W=3.6   g=0.6   h=3.175            =2.20rε

0.021” 0.026” 0.032” 0.040” 

8 GHz 
(7 by 7) 

12 GHz 
(11by11) 
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Square patch HIGP samples designed in Isopro (v.2.5.) are shown in figure 5 above. In 

this figure, numbers at the first row show the radius of drill bits that were used for the fabrication. 

The patch width (W), the gap width (g) and the height (h) are chosen as explained above. The 

substrate permittivity is rε = 2.20. 

 

One of the square patch designs is detailed in figure 6 below.  

 

  

 

                    b)  Side View 

 W = Patch Width (0.12 λ)  
 g = Gap Width (0.02 λ)  
 h = Substrate Thickness 
 r = Via Radius 
 c = Copper Cladding 

rε = Substrate Permittivity 

a) Top View 
 

Figure 6. Detailed Square Patch HIGP Design 
 
 

In figure 6a, the top view of the HIGP with patch width, gap width, via radius, and copper 

cladding parameters is shown; in figure 6b, the side view of the structure with substrate thickness 

and permittivity parameters is shown. Design parameters of square HIGP samples are shown in 

Table 3 below.   
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Table 3.Square Patch HIGP Design Parameters 
  λ   

(mm) 
W 

(mm) 
g 

(mm) 
h 

(mm) 
rε  

(duroid5880)

 8 GHz 37.5 4.5 0.75 3.175 2.20 

10 GHz 30 3.6 0.6 3.175 2.20 

12 GHz 25 3 0.5 3.175 2.20 

 

After square patch HIGP samples were designed, a 9 by 16 -inch RT/Duroid5880 board, 

with a thickness of 0.125” (3.175 mm) was used for the fabrication. After the RT/Duroid5880 

board was patterned as in figure 5, it was plated at the Air Force Research Laboratory (AFRL). 

By plating the board, square patches on the surface were connected to a conductive (copper) 

backward layer.  

 

 
(a)    (b)    (c) 

Figure 7. Square Patch HIGP Samples, a) 7 by 7 square patch HIGP,  
       b) 9 by 9 square patch HIGP, c) 11 by 11 square patch HIGP. 

 
 

 
 

28



Subsequently, square patch mushroom structures were completed. Pictures of the 

fabricated samples are shown in figure 7. In figure 7a, 7b, and 7c, top views of 7 by 7, 9 by 9 and 

11 by 11 square patch HIGPs are shown. 

 Two new HIGP samples for broadband antenna measurements and two novel HIGP 

samples were then designed. A multi-scale triangular-patch HIGP, with planar bow-tie (side 

length of 7.6 mm) antenna, is shown in figure 8a. Another multi-scale triangular patch HIGP, 

with planar bow-tie (16 mm. side length) antenna, is shown in figure 8b. The 11 by 11 square 

patch optimized HIGP is shown in figure 8c, and the circular patch hexagonal HIGP is shown in 

figure 8d. Four totally samples were built as shown in figure 8.  

 

 

a) b) 

c) d) 

Figure 8. HIGP Designs  
a) Triangular-patch HIGP with planar 7.6 mm-bow-tie antenna,  
b) Triangular-patch HIGP with planar 16 mm-bow-tie antenna,  
c) 11 by 11 square patch optimized HIGP,  
d) Circular patch hexagonal HIGP 
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 Samples were drilled first on the 9 by 16-inch RT/Duroid5880 board using a 0.032-inch 

drill bit. The 0.032-inch drill bit was chosen due to the HFSS optimization. After the board was 

drilled, it was sent to AFRL for the plating process. Finally, the HIGP designs were directly 

printed on the plated board using a milling machine as shown in figure 9.  

 

  
a)     b) 

Figure 9. Printed RT/Duroid Board, a) Top View, b) Close View. 
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3.4. Surface Wave Measurements 

 

 The Agilent E8362B Network Analyzer, is shown in figure 10, was used for the analysis 

of surface wave measurements. Surface waves on square patch HIGP samples were measured 

horizontally and diagonally. The frequency range was limited to 0-20 GHz. 

 

 
Figure 10.  Agilent E8362B Network Analyzer  

 
 Copper wires and SMA connectors, as shown in figure 11, were connected to HIGP 

samples. The outer conductor of the copper wires was shorted to the back side of the ground 

plane, and the center connector was extended through the front side and connected to the square 

patch as shown in figure 12, and figure 13.   

 

 
Figure 11. Square HIGP Samples and Copper Wires 
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(a)    (b)    (c) 
 

Figure 12.  Diagonal Surface Wave Measurements  
                     a) 7 by 7 HIGP, b) 9 by 9 HIGP, c) 11 by 11 HIGP   

 

In diagonal surface wave measurements, copper wires were diagonally connected to two 

square patches, which are located one patch before the corner as shown in figure 12. Selected 

patches were drilled at their centroids, then the center connector was extended through the ground 

plane and soldered to the patch element, the outer conductor was shorted to the ground plane.  

After both copper wires were connected to selected square patches, samples were 

connected to port1 and port2 of the network analyzer as shown in figure 14. After the calibration 

of the network analyzer, the S  data was taken. The data was analyzed in Matlab (v.2007a) and 

results were analyzed in chapter 4. In horizontal surface wave measurements, another copper wire 

was horizontally connected to the ground plane as shown in figure 13. Two horizontal wires were 

connected to the network analyzer and the third connector was connected to the 50 Ohm 

terminator. The data was analyzed in Matlab (v.2007a) and results are shown in chapter 4. 
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(a)    (b)    (c) 
 

Figure 13. Horizontal Surface Wave Measurements  
                 a) 7 by 7 HIGP, b) 9 by 9 HIGP, c) 11 by 11  

 

The 50 ohm terminator used in the horizontal surface wave measurements is shown in 

figure 14.a. Figure 14 also shows the horizontal connection of the HIGP samples.   

 

 
(a)     (b) 

 
(c) (d) 

Figure 14. HIGPs Connected to Network Analyzer 
      a) 50 Ohm terminator, b) 7 by 7, c) 9 by 9, d) 11 by 11  
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3.5. Narrowband Antenna Measurements 

 

Dipole antennas were chosen as a narrowband antenna. To understand the behavior of 

dipole antennas, in different lengths, over HIGP samples, radiation mechanisms were examined. 

 The AFIT anechoic chamber was used for narrowband antenna measurements. Three 

different dipole lengths were chosen for each of the HIGP samples. Totally, twelve dipole 

antennas, the lengths of which are proportional to the wavelength of design frequencies, are 

shown in Table 4 below.  

 
Table 4. Length of Dipole Antennas  

DIPOLE  
LENGTH 

HIGP SAMPLES
8GHz  

(7 by 7)
10 GHz  
(9 by 9)

12GHz  
(11 by 11) 

 λ  (mm) 37.5 30 25 
0.4 15 12 10 

0.5 18.75 15 12.5 

0.7 26.25 21 17.5 
  

 Dipole antennas were built by connecting two copper wires parallel. Each dipole was 

positioned in the center of the HIGP. The front view of a dipole antenna and HIGP sample is 

shown in figure 15.a. The outer conductors of the wires were soldered to each other and the inner 

conductors were used as a dipole antenna. HIGP samples were drilled in the middle and the 

dipole antennas were passed through samples. The outer conductors were soldered to the back 

side of the HIGP sample as shown in figure 15.b. A 3-dB hybrid coupler with 180  phase 

difference is shown in figure 16 was used for measurements. This helped to feed the antenna in a 

balanced way, the frequency band was considered between 2–18 GHz for the measurements. 
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(a)     (b) 

 
(c)     (d) 

Figure 15.  HIGP/Dipole Antenna Designs  
a) Horizontally located dipole antenna over HIGP (Front View);   
b) Horizontally located dipole antenna over HIGP (Back View);  
c) Diagonally located dipole antenna over HIGP (Front View);  
d) Horizontally located dipole antenna over PEC.  

 

 

Figure 16. Hybrid Coupler  

 

 Dipole antenna/HIGP samples, with hybrid coupler, were put into Styrofoam and 

mounted on a maneuverable stand located in the middle of the anechoic chamber as shown in 

figure 17. 
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Figure 17. Dipole Antenna/HIGP Measurement in the Anechoic Chamber. 

  

Dipoles were measured in three different ways. In the first two measurements, dipoles 

were mounted horizontally and diagonally as in figure 18. In the third measurement, the HIGP 

was covered with a copper tape and the dipole antenna horizontally located over the copper-

covered HIGP as in figure 18.d. Thus PEC/dipole data was taken for comparison. 

 

 
(a)     (b) 

 
(c)     (d) 

Figure 18.  HIGP/Dipole Antenna Anechoic Chamber Measurements  
a) Horizontally Located Dipole Antenna over HIGP;  
b) Horizontally Located Dipole Antenna over HIGP (Close View);  
c) Diagonally Located Dipole Antenna over HIGP;  
d) Horizontally Located Dipole Antenna over PEC.  
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 Table 5. List of Narrowband Antenna Measurements 
HIGP Dipole Length Measurement 

7 by 7 

0.4λ 
15 mm Dipole V/H 
15 mm Diagonal Dipole V/H 
15 mm PEC Dipole V/H 

0.5λ 
18.75 mm Dipole V/H 
18.75 mm Diagonal Dipole V/H 
18.75 mm PEC Dipole V/H 

0.7λ 
26.25 mm Dipole V/H 
26.25 mm Diagonal Dipole V/H 
26.25 mm PEC Dipole V/H 

9 by 9 

0.4λ 
12 mm Dipole V/H 
12 mm Diagonal Dipole V/H 
12 mm PEC Dipole V/H 

0.5λ 
15 mm Dipole V/H 
15 mm Diagonal Dipole V/H 
15 mm PEC Dipole V/H 

0.7λ 
21 mm Dipole V/H 
21 mm Diagonal Dipole V/H 
21 mm PEC Dipole V/H 

11 by 11 

0.4λ 
10 mm Dipole V/H 
10 mm Diagonal Dipole V/H 
10 mm PEC Dipole V/H 

0.5λ 
12.5 mm Dipole V/H 
12.5 mm Diagonal Dipole V/H 
12.5 mm PEC Dipole V/H 

0.7λ 
17.5 mm Dipole V/H 
17.5 mm Diagonal Dipole V/H 
17.5 mm PEC Dipole V/H 

 
 

 A total of fifty four narrowband antenna measurements, for three different HIGP samples, 

were completed as shown in Table 5. The results of these measurements are detailed in chapter 4. 

The upper case letters ‘V/H’ stand for vertical/horizontal, which means the transmitter antenna, 

was vertically and horizontally set. HIGP/dipole antenna samples were set as a receiver antenna. 
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The S  data was taken and calibrated afterwards. Radiation patterns of dipoles were examined to 

better understand the behavior of each dipole over square patch HIGP. 

21

The DRH-0118 broadband, double ridged horn antenna, which is linearly polarized, was 

used for the calibration of the anechoic chamber measurements. The DRH-0118 broadband 

antenna, as shown in figure 19, was used while the calibration data was being taken. The 

broadband horn antenna operates over a frequency of 1 to 18 GHz, and the HIGP/dipole antenna 

samples were tested over the frequency of 2-18 GHz. Thus calibration measurements were 

applied between 2-18 GHz, twice a day, one at the beginning and one at the end. The data, of 

vertical-vertical broadband horn antenna measurement, was compared to the theoretical data. The 

difference between the measured and the theoretical data was added to the data of HIGP/dipole 

antenna measurements. 

 

 

Figure 19. The DRH-0118 Broadband, Double Ridged Horn Antenna 
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 3.6. Broadband Antenna Measurements 

 

 The AFIT’s far-field anechoic chamber was used for broadband antenna measurements. A 

log-periodic antenna was chosen as a broadband antenna. In figure 20, the picture of the chosen 

log-periodic broadband antenna is shown. To understand the different behavior of a broadband 

antenna over the HIGP samples, first the log-periodic antenna was measured in the anechoic 

chamber to obtain the free space radiation pattern. Then two different HIGP samples with the 

log-periodic, detailed below, were analyzed. The optimized samples were designed to provide 

maximum band gap and bandwidth in the desired frequency range. 

 

 
Figure 20. The Log-periodic Broadband Antenna  

 
The first HIGP sample, shown in figure 21 was designed as an 11 by 11 square patch 

HIGP. The square patch design was printed on a RT/duroid 5880 board. The substrate 

permittivity (εr) is 2.2. This design is similar to the starting HIGP designs that were used in the 

narrowband antenna measurements, but with different parameters. In Table 6, design parameters 

of the square patch HIGP sample are shown.  
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a) b) 
 

Figure 21.  11 by 11 Square Patch HIGP, a) HFSS Design, b) Fabricated HIGP 

 

Table 6. Design Parameters of the 11 by 11 Square Patch HIGP 
Parameters Length (mm/inch) 

Patch Width (W) 5.5 / 0.2165 

Gap Width  (g) 0.4 / 0.0157 

Substrate Thickness (h) 3.175 / 0.125 

Via Radius (r) 0.0406 / 0.016 

Copper Cladding (c) 0.035 / 0.0014 

 

The patch width of the design is 5.5 mm and the gap width is 0.4 mm as shown in Table 

6. The parameters used are the optimized parameters using Ansoft’s HFSS v.10. In this design, 

the patch width was increased, whereas the gap width was decreased. It is anticipated that the 

increase in patch width and the decrease in gap width provide better bandwidth and band gap. A 

log-periodic broadband antenna was mounted on the square patch HIGP sample, and it was 

measured in the anechoic chamber as shown in figure 22. 
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b) b) 
 

Figure 22.  11 by 11 Square Patch HIGP/Log-periodic Antenna Combination 
      a) Log-periodic Antenna over 11 by 11 Square Patch HIGP, 
      b) Log-periodic Antenna over 11 by 11 Square Patch HIGP Measurement 
 

The second HIGP sample was designed as a circular patch hexagonal structure as shown 

in figure 23a. In this design the diameter of a circle (i.e. the patch width) is 5.5 mm and the 

minimum gap between two circles (i.e. the gap width) is 0.4 mm. The circular patch hexagonal 

square patch design was printed on a RT/Duroid 5880 board as shown in figure 23b. The 

behavior of the circular patches and the hexagonal structure were analyzed and compared to the 

square patch sample. 

    
a) b) 
 

Figure 23. Circular Patch Hexagonal HIGP, a) HFSS Design, b) Fabricated HIGP 
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In Table 7, design parameters of the circular patch hexagonal HIGP sample are shown.  

 

Table 7. Design Parameters of the Circular Patch Hexagonal HIGP   
Parameters Length (mm/inch) 

Patch Width (W) 5.5 / 0.6299 

Gap Width  (g) 0.4 / 0.0157 

Substrate Thickness (h) 3.175 / 0.125 

Via Radius (r)  0.0406 / 0.016 

Copper Cladding (c) 0.035 / 0.0014 

 

The same log-periodic broadband antenna was mounted on the circular patch hexagonal 

HIGP. Only two horizontal arms of the log-periodic were excited via a hybrid coupler. The 

HIGP/antenna combination was measured horizontally in the anechoic chamber as shown in 

figure 24 and the gain of the antenna was measured after calibration. 

 

 
 

a) b) 
 

Figure 24. Circular Patch Hexagonal HIGP/Log-periodic Antenna Combination  
     a) Log-Periodic Antenna over the Circular Patch Hexagonal HIGP 

       b) Log-Periodic Antenna/11 by 11 Circular Patch Hexagonal HIGP Measurement 
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3.7. Novel HIGP Design Measurements 

 

Square shaped elements have mostly been used in the construction of mushroom structure 

HIGPs. For this reason, two multi-scale triangular patch HIGPs were developed as novel designs. 

Two equilateral triangles with side lengths of 16 mm and 7.6 mm were used. A bow-tie antenna 

was chosen since it is relatively broadband, and its triangular arms allow for its natural 

integration into the HIPG structure. Thus, a bow-tie antenna was located in the center of the 

HIGP structure. Two multi-scale periodic HIGP samples, along with the active bow-tie antennas 

were printed directly onto a RT/Duroid 5880 substrate with a permittivity of εr=2.2 to form the 

HIGP-antenna combinations. The connections of the mushroom elements were formed by drilling 

vias at the centroids of the HIGP elements. Furthermore, the bow-tie antenna was excited by a 

balanced coaxial feed using two coaxial lines fed with 180o phase difference. The design 

parameters are shown in Table 8 below. 

 

Table 8. Design Parameters of Multi-scale Triangular Patch HIGP Designs 
Parameters Length (mm/inch) 

Patch Width ( ) 1W 7.6 / 0.2992 

Patch Width ( ) 2W 16 / 0.6299 

Gap Width  (g) 0.4 / 0.0157 

Substrate Thickness (h) 3.175 / 0.125 

Via Radius (r)  0.0406 / 0.016 

Copper Cladding (c) 0.035 / 0.0014 
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We used triangular mushroom element HIGPs made from two different size elements. 

They have a combined large band-gap that extends across the operation bandwidth of a simple 

bow-tie antenna.   

In the first design, a 16 mm-bow-tie antenna was located in the middle of multi-scale 

triangular mushrooms. The bow-tie was vertically covered with smaller triangular mushrooms 

(with side lengths of 7.6mm) and larger mushrooms (with side lengths of 16mm) were located on 

the sides as shown in figure 25.  

 

        
a)      b) 

Figure 25.  Multi-scale Triangular-patch HIGP with 16 mm-Bow-tie Antenna  
         a) HFSS Design, b) Fabricated Sample 

The return loss and the radiation pattern of the bow-tie were tested. The radiation pattern 

of the combination was measured in the anechoic chamber as shown in figure 26. 

 

Figure 26. Triangular-patch HIGP with 16 mm-Bow-tie Antenna Measurement 
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In the final design, a 7.6 mm-bow-tie antenna was located in the center of multi-scale 

triangular mushrooms. The bow-tie was surrounded with smaller triangular mushrooms (with 

side lengths of 7.6mm). Larger mushrooms (with side lengths of 16mm) were located to the 

edges of the substrate. The resulting composite antenna geometry is shown in figure 27.  

 

            
a)      b) 

Figure 27. Multi-scale Triangular-patch HIGP with 7.6 mm-Bow-tie Antenna 
         a) HFSS Design, b) Fabricated Sample 

The radiation pattern of the HIGP/bow-tie combination was measured in the anechoic 

chamber as shown in figure 28. The return loss of the composite antenna was also characterized 

from 2 to 10 GHz using Agilent E8362B network analyzer. Return loss results were compared to 

the bow-tie antenna performance in free-space and on a PEC ground plane.  

 

 

Figure 28. Triangular-patch HIGP with 16 mm-Bow-tie Antenna Measurement  
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Chapter 4 Results and Analysis 

 

4.1. Chapter Overview 

 

Results based on the data gathered through experimental measurements are 

analyzed and presented in this chapter in three phases. Moreover some results are 

compared to HFSS simulations and were verified. In the first phase results of square 

patch HIGP surface wave measurements are analyzed. The second phase analyzes the 

behavior of different length dipoles as narrowband antennas over the square patch HIGP 

samples. The last phase analyzes behaviors of a log-periodic and two bow-tie broadband 

antennas over different HIGP surfaces. 

 

4.2. Results of Surface Wave Measurements 

 

Diagonal and horizontal surface waves for 7 by 7, 9 by 9, and 11 by 11 HIGP 

samples were measured and analyzed to understand the surface wave suppression of 

different-size square patch mushroom structures, and to find out surface wave frequency 

band gap. Each of the surface wave measurement results were compared to HFSS (v.10) 

simulation results to verify our measurements. It is seen that similar results were obtained 

from both experiment and simulation. 

HIGP analysis included both surface wave measurements and antenna 

measurements. Same samples used in surface wave measurements were also used in 

narrowband antenna measurements. Resonant frequencies of dipoles over square patch 
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HIGPs are expected to be similar to reference (Yang and Rahmat-Samii, 2003a:2691-

2703). For this reason, band gaps occurring in 10GHz +/- 6 GHz frequency ranges were 

of interest. 

The result of the 7 by 7 square HIGP diagonal surface wave measurement is 

shown in figure 29. The HIGP sample had a band gap from 5.70 GHz to 13.80 GHz, 

better than   -20 dB with 8.10 GHz-bandwidth. Another band gap between 0-5 GHz, 

better than -20dB with a 5 GHz-bandwidth is also noticed. Similar figures were obtained 

from simulation. In figure 30, the result of the HFSS simulation is shown. A band gap 

better than-20 dB from 4.5 GHz to 12 GHz with a 7.5 GHz bandwidth is easily noticed. A 

similar band gap is also seen between 0-4.5 GHz as in the experimental result.  

The 9 by 9 square patch HIGP diagonal surface wave measurement result is 

shown in figure 31. The HIGP structure had a band gap from 6.70 GHz to 15.50 GHz , 

better than -40 dB with 8.80 GHz-bandwidth. The simulation result is shown in figure 32. 

A similar band gap from 5.8 GHz to 15.5 GHz, better than -40 dB with a 9.7 GHz 

bandwidth is noticed. Another noticeable band gap between 1-5.5 GHz is also seen. 

The 11 by 11 square HIGP diagonal surface wave measurement result is shown in 

figure 33. The HIGP sample had a band gap from 7.20 GHz to 16.60 GHz, better than -50 

dB with a 9.40 GHz-bandwidth. Figure 34 shows the simulation result. A similar band 

gap from 6 GHz to 16 GHz, better than -50 dB with a 10 GHz-bandwidth is noticed. 

Another band gap between 1-5.5 GHz as in 9 by 9 diagonal surface wave simulation 

result is also noticed. 

 The result of the 7 by 7 square HIGP horizontal surface wave measurement is 

shown in figure 35. The HIGP sample had a band gap from 5.70 GHz to 13.80 GHz 

 
 

47



better than -20 dB with an 8.10 GHz-bandwidth as in the diagonal measurement. Another 

band gap between 0-5 GHz, better than -20dB, with a 5 GHz-bandwidth is seen. A 

similar figure was obtained from simulation. Figure 36 shows the simulation results. A 

band gap from 5 GHz to 11.5 GHz, better than -20 dB, is noticed. A similar band gap is 

also seen between 1-4.5 GHz at the experimental results.   

The 9 by 9 square HIGP horizontal surface wave measurement results are shown 

in figure 37. The HIGP sample had a band gap from 6.70 GHz to 15.00 GHz better than -

40 dB with 8.30 GHz-bandwidth. The simulation results are shown in figure 38. A 

similar band gap from 6.5 GHz to 13.2 GHz, better than -40 dB, with a 6.7 GHz 

bandwidth is noticed. Another noticeable band gap between 1-6 GHz is also seen. 

The 11 by 11 square HIGP horizontal surface wave measurement results are as 

shown in figure 39. The HIGP sample had a band gap from 7.20 GHz to 16.60 GHz, 

better than -50 dB with a 9.40 GHz bandwidth. Figure 40 shows the simulation results. 

Similar band gap from 6.5 GHz to 13 GHz, better than -50 dB with a 7.5 GHz bandwidth 

is noticed. Another band gap between 1-5.5 GHz is also seen. 

All surface wave measurement results of square patch HIGP samples are listed 

below in Table 9. 

 
 

Table 9. HIGP Surface Wave Measurements Results 

HIGP 
 

Experiment Simulation 
Band Gap 

(GHz) 
Bandwidth

(GHz) 
Band Gap 

(GHz) 
Bandwidth 

(GHz) 
7 by 7 Diagonal 5.70 – 13.80 8.10 4.50 – 12.00 7.50 
9 by 9 Diagonal 6.70 – 15.50 8.80 5.80 – 15.50 9.70 
11 by 11 Diagonal 7.20 – 16.60 9.40 6.00 – 16.00 10.00 
7 by 7 Horizontal 5.70 – 13.80 8.10 5.00 – 11.50 6.50 
9 by 9 Horizontal 6.70 – 15.00 8.30 6.50 – 13.20 6.70 
11 by 11 Horizontal 7.20 – 16.60 9.40 6.50 – 13.00 7.50 
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Figure 29:  7 by 7 HIGP Diagonal Surface Wave Result 

 

 
Figure 30: 7 by 7 HIGP Diagonal Surface Wave HFSS Result 
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Figure 31:  9 by 9 HIGP Diagonal Surface Wave Result 

 

 
Figure 32:  9 by 9 HIGP Diagonal Surface Wave HFSS Result 
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Figure 33: 11 by 11 HIGP Diagonal Surface Wave Result 

 

 
Figure 34: 11 by 11 HIGP Diagonal Surface Wave HFSS Result 
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Figure 35:  7 by 7 HIGP Horizontal Surface Wave Result 

 

 
Figure 36:  7 by 7 HIGP Horizontal Surface Wave HFSS Result  
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Figure 37: 9 by 9 HIGP Horizontal Surface Wave Result 

 

 
Figure 38: 9 by 9 HIGP Horizontal Surface Wave HFSS Result  
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Figure 39: 11 by 11 HIGP Horizontal Surface Wave Result 

 

 
Figure 40: 11 by 11 HIGP Horizontal Surface Wave HFSS Result 
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4.3. Results of Narrowband Antenna Measurements  

 

 In this phase, the same square-patch HIGP samples were tested with three 

different length dipole antennas. The list of dipole antenna lengths were given in Table 4 

and the list of measurements are shown in Table 5 in chapter 3.  

First, the return loss data of HIGP/dipole combinations was taken from 2 GHz to 

18 GHz. Band gaps which have a return loss better than -10 dB are identified to find out 

the resonant frequencies of the dipoles. Dipoles are well matches at resonant frequencies. 

Thus, the frequencies which provide the minimum return loss were chosen for use in the 

radiation pattern figures in gain measurements. 

The result of each gain measurement is analyzed in three figures. The three 

dimensional dipole antenna pattern is shown in the first figure, the gain performance of 

the antenna is shown in the second figure, and the radiation pattern at the maximum 

impedance match point is given in the third figure.  

In the three dimensional antenna pattern figures the frequency range from 2 GHz 

to 18 GHz and the angle range from -90  to 90  were taken. In gain performance figures 

the data at 0  is plotted which means both transmitter and the receiver antennas were 

head on to each other. In radiation pattern figures, frequencies, which give better return 

loss results were chosen and radiation pattern figures were plotted at this frequency in the 

-90  to 90  angle range. The frequency band, which gives better return loss result, is also 

known as an input-match frequency band. It is expected that the operational frequency 

band of our HIGP/antenna combinations should be the overlap of the surface-wave 

frequency band and the input-match frequency band.  
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4.3.1. 7 by 7 HIGP/Dipole Antenna Return Loss Measurements 

 

The result of the 7 by 7 HIGP/0.4 8GHzλ -dipole antenna return loss measurement is 

shown in figure 41. The dipole shows a return loss better than -10 dB from 8 to 12 GHz 

and from 13 to 14.5 GHz. Better return loss values were obtained at 10.5 GHz, and 13.7 

GHz.  

The result of the 7 by 7 HIGP/0.5 8GHzλ -dipole antenna return loss measurement is 

shown in figure 42. The dipole shows a return loss better than -15 dB from 10 to 12 GHz 

and from 13 to 14 GHz. Better return loss values were obtained at 10.5 GHz, and 13.7 

GHz.  

The result of the 7 by 7 HIGP/0.50.7 8GHzλ -dipole antenna return loss 

measurement is shown in figure 43. The dipole shows a return loss better than -15 dB 

from 8 to 12 GHz and from 13 to 14 GHz. Better return loss values were obtained at 10.5 

GHz, and 13.7 GHz. 

a) 7 by 7 HIGP with 0.4 8GHzλ -Dipole Return Loss Measurement 
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Figure 41: 7 by 7 HIGP with 0.4 8GHzλ -Dipole Return Loss Result 
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b) 7 by 7 HIGP with 0.5 8GHzλ -Dipole Return Loss Measurement 
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Figure 42: 7 by 7 HIGP with 0.5 8GHzλ -Dipole Return Loss Result 

c) 7 by 7 HIGP with 0.7 8GHzλ -Dipole Return Loss Measurement 
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Figure 43: 7 by 7 HIGP with 0.7 8GHzλ -Dipole Return Loss Result 
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4.3.2. 7 by 7 HIGP/Dipole Antenna Gain Measurements 

 

Figure 44 shows the results of the 7 by 7 HIGP/0.4 8GHzλ -dipole measurements. 

The HIGP/antenna combination had better gain from 6.8 to 11.1 GHz with a 4.3 GHz 

bandwidth. Figure 45 shows the results of the 7 by 7 HIGP/0.5 8GHzλ -dipole antenna 

measurements. The HIGP/antenna combination had better gain from 6.6 to 11.1 GHz 

with a 4.5 GHz bandwidth. Figure 46 shows the results of the 7 by 7 HIGP/0.7 8GHzλ -

dipole antenna measurements. The HIGP/antenna combination had better gain from 6.5 

to 11.1 GHz with a 4.6 GHz bandwidth.  

Figure 47 shows the comparison of the gain performance of 0.4 8GHzλ , 0.5 8GHzλ , 

and 0.7 8GHzλ  dipoles over the 7 by 7 HIGP. The 0.7 8GHzλ  had better gain than other 

dipoles. Especially in the frequency range between 6.8 and 11.1 GHz, HIGP provides 

almost 10 dB gain. Figure 48 shows the comparison of the gain performance of 0.4 8GHzλ , 

0.5 8GHzλ , and 0.7 8GHzλ  dipoles over the PEC. The 0.7 8GHzλ  dipole had better gain than 

0.4 8GHzλ , 0.5 8GHzλ  dipoles, but especially in low frequencies dipoles have  much less gain 

than the dipoles over the HIGP, due to the conducting surface. 

, 0.5 8GHzλ , Figure 49 shows the comparison of the radiation pattern of 0.4 8GHzλ and 

0.7 8GHzλ  dipoles over the 7 by 7 HIGP. The 0.7 8GHzλ  dipole had better radiation pattern at 

10.5 GHz, better than 8 dB. Figure 50 shows the comparison of the radiation pattern of 

0.4 8GHzλ , 0.5 8GHzλ , and 0.7 8GHzλ  dipoles over the PEC at 10.5 GHz. The 0.7 8GHzλ  dipole 

had better gain than the other dipoles, but it’s seen that HIGP provides much better gain. 
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a) 7 by 7 HIGP with 0.4 -Dipole Horizontal Measurement 

 

8GHzλ

 

a) 7 by 7 0.4 -Dipole Antenna Pattern 8GHzλ

 

b) Gain Performance    c) Radiation Pattern at 10.5 GHz 

Figure 44: 7 by 7 Square Patch HIGP with 0.4 8GHzλ -Dipole Measurement  
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b)  7 by 7 HIGP with 0.5 8GHzλ  (18.75  Dipole Horizontal Memm) asurement 

 

 

a) 7 by 7 0.5 -Dipole Antenna Pattern 
 
 

8GHzλ

 
b) Gain Performance    c) Radiation Pattern at 10.5 GHz 
 

Figure 45: 7 by 7 Square Patch HIGP with 0.5 8GHzλ -Dipole Horizontal Measurement  
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c) 7 by 7 HIGP with 0.7  (26.25 mm) Dipole Horizontal Measurement 8GHzλ
 

 
 

a) 7 by 7 0.7  Dipole Antenna Pattern 8GHzλ
 

 
b) Gain Performance    c) Radiation Pattern at 10.5 GHz 
 

Figure 46: 7 by 7 Square Patch HIGP with 0.7 8GHzλ -Dipole Horizontal Measurement  
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Figure 47: 7 by 7 HIGP/Dipole Gain Performance Comparison 
 
 

 
Figure 48: 7 by 7 PEC/Dipole Gain Performance Comparison 
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Figure 49: 7 by 7 HIGP/ Dipole Radiation Pattern Comparison 
 

 

Figure 50: 7 by 7 PEC/ Dipole Radiation Pattern Comparison 
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4.3.3. 9 by 9 HIGP/Dipole Antenna Return Loss Measurements 

 

The results of the 9 by 9 HIGP/0.4 10GHzλ -dipole antenna return loss measurement 

are shown in figure 51. The dipole shows a return loss better than -10 dB from 13 to 15 

GHz. Better return loss values obtained at 10.5 and 14 GHz. 

The results of the 9 by 9 HIGP/0.5 10GHzλ -dipole antenna return loss measurement 

are shown in figure 52. The dipole shows a return loss better than -15 dB from 13 to 14.5 

GHz. Better return loss value obtained at 10.5 and 14 GHz.  

The results of the 9 by 9 HIGP/0.50.7 10GHzλ -dipole antenna return loss 

measurement are shown in figure 53. The dipole shows a return loss better than -15 dB 

from 13 to 14 ere obtained 

at 10.5, and 14 GHz. 

 

a) 9 by 9 HIGP with 0.4
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-Dipole Return Loss Result Figure 51: 9 by 9 HIGP with 0.4 10GHzλ
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b) 9 by 9 HIGP with 0.5 10GHzλ -Dipole Return Loss Measurement 
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Figure 52: 9 by 9 HIGP with 0.5 -Dipole Return Loss Result 10GHzλ

c) 9 by 9 HIGP with 0.7 -Dipole Return Loss Measurement 10GHzλ
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-Dipole Return Loss Result Figure 53: 9 by 9 HIGP with 0.7 10GHzλ

 
 

65



4.3.4. 9 by 9 HIGP/Dipole Antenna Gain Measurements 

 

Figure 54 shows the results of the 9 by 9 HIGP/0.4 10GHzλ -

 shows the results of the 9 by 9 

dipole antenna 

measurements. The HIGP/antenna combination had better gain from 7.6 GHz to 10.9 

GHz with a 3.3 GHz bandwidth. Figure 55

HIGP/0.5 10GHzλ -

results of the 9 by 9 HIGP/0.7

dipole antenna measurements. The HIGP/antenna combination had 

better gain from 7.0 GHz to 11.0 GHz with a 4.0 GHz bandwidth. Figure 56 shows the 

10GHzλ -dipole antenna measurem P/antenna 

combination had better gain from 6.9 GHz to 11.1 GHz with a 4.2 GHz bandwidth. 

Figure 57 shows the comparison of the gain performance of 0.4

ents. The HIG

, 0.5 10GHzλ , 10GHzλ

and 0.7 10GH  dipoles over 9 by 9 HIGP. Ac ng to the comparison, the 0.7 10GHzλ  (21 

 shows

cordiλ z

mm) dipole had better gain from 6.9 GHz to 11.1 GHz better than 9dB. Figure 58  

the com arison of the gain performance of 0.4p 10GHzλ , 0.5 10GHzλ ,     and 0.7 10GHzλ  dipoles 

over PEC. According to the comparison, the 0.7 10GHzλ  (21 mm) 

comp

dipole looks better 

ared to the 0.4 10GHzλ -dipole, and 0.5 10GHzλ -dipole. But since the ground plane is a 

conducting surface, dipoles have much less gain at low frequencies. 

Figure 59 shows the comparison of the radiation pattern of 0.4 10GHzλ , 0.5 10GHzλ , 

and 0.7 10GHzλ  dipoles over 9 by 9 HIGP. According to the comparison, the 0.7 10GHzλ  (21 

mm) dipole had better radiation pattern at 10.5 GHz, better th

the com arison of the radiation pattern of 0.4

an 9 dB. Figure 60 shows 

p 10GHzλ , 0.5 10GHzλ , and 0.7 10GHzλ  dipoles over 

9 by 9 PEC. Even, the 0.7 10GHzλ  dipole had better gain compared to the others, dipoles 

over the PE dipolC surface have less gain than the es over the HIGP. 

 
 

66



a) 9 by 9 HIGP with 0.4 10GHzλ  (12 mm) Dipole Horizontal Measurement 
 

 
a) 9 by 9 0.4 10GHzλ Dipole Antenna Pattern 

 
 

 

 
b) Gain Performance    c) Radiation Pattern at 10.5 GHz 

Figure 54: 9 by 9 Square Patch HIGP with 0.4 -Dipole Horizontal Measurement  10GHzλ
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b)  9 by 9 HIGP with 0.5 z  (15 mm) Dipole Horizontal Measurement10GHλ  
 

 
 

a) 9 by 9 0.5 D10GHzλ ipole Antenna Pattern 
 

 

 
b) Gain Performance    c) Radiation Pattern at 10.5 GHz 

Figure 55: 9 by 9 Square Patch HIGP with 0.5
 

10GHzλ -Dipole Horizontal Measurement  
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c) 9 by 9 HIGP with 0.7  (21 mm) Dipole Horizontal Measurement 10GHzλ
 

 
a) 9 by 9 0.7 10GHzλ Dipole Antenna Pattern 

 
 

 
 

b) Gain Performance    c) Radiation Pattern at 10.5 GHz 
 

Figure 56: 9 by 9 Square Patch HIGP with 0.7 -Dipole Horizontal Measurement  10GHzλ
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Figure 57: 9 by 9 HIGP/ Dipole Gain Performance Comparison 
 
 

 
 

Figure 58: 9 by 9 PEC/ Dipole Gain Performance Comparison 
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Figure 59: 9 by 9 HIGP/ Dipole Radiation Pattern Comparison 
 

 

Figure 60: 9 by 9 PEC/ Dipole Radiation Pattern Comparison 
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4.3.5. 11 by 11 HIGP/Dipole Antenna Return Loss Measurements 

 

The results of the 11 by 11 HIGP/0.4 12GHzλ -dipole return loss measurement are 

shown in figure 61. The dipole shows a return loss better than -10 dB, from 6.5 to 7.5 

GHz, and from 13.5 to 15 GHz. Better return loss were obtained at 7 and 14 GHz.  

The results of the 11 by 11 HIGP/0.5 12GHzλ -dipole return loss measurement are 

shown in figure 62. The dipole shows a return loss better than -14 dB, from 7 to 7.5 GHz, 

from 13.5 to 15 GHz, and from 17 to 18 GHz. The best return loss values were obtained 

at 7 GHz, and 14 GHz.  

The results of the 11 by 11 HIGP/0.7 12GHzλ -dipole return loss measurem t are 

shown in figu  to 7.5 GHz, 

and from 16 to 18 GHz. Better return loss value were obtained at 7, 14, and 17.5 GHz. 

 
a) 11 by 11 HIGP with 0.4

en

re 63. The dipole shows a return loss better than -14 dB, from 6

12GHzλ -Dipole Return Loss Measurement 
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Figure 61: 11 by 11 HIGP with 0.4 12GHzλ -Dipole Return Loss Result 
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b) 11 by 11 HIGP with 0.5 12GHzλ -Dipole Return Loss Measurement 
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Figure 62: 11 by 11 HIGP with 0.5 12GHz

 
λ -Dipole Return Loss Result 

 

c) 11 by 11 HIGP with 0.7 -Dipole Return Loss Measurement 12GHzλ
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Figure 63: 11 by 11 HIGP with 0.7 12GHzλ -Dipole Return Loss Result 
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4.3.6. 11 by 11 HIGP/Dipole Antenna Gain Measurements 

 

Figure 64 shows the results of the 11 by 11 HIGP/0.4 GHZ12λ -dipole antenna 

measurements. The HIGP/antenna combination had better gain from 8.15 GHz to 11.15 

GHz with a 3.0 GHz bandwidth. 

Figure 65 shows the results of the 11 by 11 HIGP/0.5 GHZ12λ -dipole antenna 

measurements. The HIGP/antenna combination had better gain from 7.6 GHz to 11.2 

GHz with a 3.6 GHz bandwidth. 

Figure 66 shows the results of the 11 by 11 HIGP/0.7 GHZ12λ -dipole antenna 

measurements. The HIGP/antenna combination had better gain from 7.45 GHz to 11.25 

GHz with 

Figure 67 shows the gain performance comparison of 0.4

a 3.8 GHz bandwidth. 

, 0.5 GHZ12λ , and GHZ12λ

0.7 GHZ12λ  dipole over the 11 by 11 square patch HIGP. According to the comparison, the 

0.7 GHZ12λ  (17.5 mm) dipole had better gain from 7.45 

Figure 68 shows the comparison of the gain performance of 0.4

GHz to 11.25 GHz better than 9dB. 

, 0.5 GHZ12λ , GHZ12λ

and 0.7 GHZ12λ  dipoles over PEC. The 0.7 GHZ12λ -dipole had better gain than the 0.4 10GHzλ -

dipole, and 0.5 10GHzλ -dipole, but mu ipoles over the

Figure 69 shows the radiation pattern comparison of 0.4

ch less than the d  HIGP. 

, 0.5 GHZ12λGHZ12λ , and 

0.7 GHZ12λ  

GHZ12

dipole over 11 by 11 square patch HIGP. According to the com

0.7

parison, the 

λ  (17.5 mm) dipole had better radiation pattern at 10.5 GHz, better than 8 dB. 
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GHZ12λ , Figure 70 shows the comparison of the radiation pattern of 0.4 0.5 GHZ12λ , 

and 0.7 GHZ12λ  dipole over 11 by 11 PEC. Even the 0.7 GHZ12λ  dipole had better gain than 

the 0.4 GHZ12λ -dipole, and 0.5 GHZ12λ -dipole, the HIGP provide m r gain to the 

dipoles as expected. 

As a result of all the m

u

easurement, we can say that, dipoles over the HIGP 

sample

ll HIGP/dipole combinations is so close in comparison. 

All dip s rece

owband antenna measurements over HIGP samples are 

listed b

 

Dipole 

th 

ch bette

s have much better gain than the dipoles over PEC surface. HIGP samples provide 

better than 9 dB gain to the dipoles, while PEC surface reduces the gain of the dipoles. 

The gain performance of a

oles operate well between 7 GHz and 11 GHz, and all dipole ive better than 9 

dB in these frequency range.  

All the results of the narr

elow in Table 10. 

Table 10. HIGP/Dipole Antenna Measurement Results 

Leng

7 by 7 HIGP 9 by 9 HIGP 11 by 11 HIGP 

Band Gap 

(GHz) 

Bandwidth

(GHz) 

Band Gap 

(GHz) 

Bandwidth 

(GHz) 

Band Gap 

(GHz) 

Bandwidth 

(GHz) 

λ  6.8 – 11.1 4.3 7.6 – 10.9 3.3 8.15 – 11 3.0.4 .15 00 

0.5λ   – 11.1 4.5 7.0 – 4.0 7.60 – 11.20 3.66.6  11.0 0 

λ  6.5 – 11.1 4.6 6.9 – 11.1 4.2 7.45 – 11.25 3.80 0.7
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a) 11 by 11 HIGP with 0.4 12GHzλ  (10 mm) Dipole Horizontal M reme

 

easu nt 

 
a) 11 by 11 0.4 12GHz Dipole Antenna Pattern λ

 

 
b) Gain Performance    c) Radiation Pattern at 10.5 GHz 
 

Figure 64: 11 by 11 Square Patch HIGP with 0.4 12GHzλ -Dipole Horizontal Measurement  
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b) 11 by 11 HIGP with 0.5 z  (12.5 mm) Dipole Horizontal Measuremen12GHλ t 
 

 
a) 11 by 11 0.5 12GHzλ Dipole Antenna Pattern 

 
 

 
b) Gain Performance    c) Radiation Pattern at 10.5 GHz 
 

-Dipole Horizontal Measurement  Figure 65: 11 by 11 Square Patch HIGP with 0.5 12GHzλ
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c) 11 by 11 HIGP with 0.7 12GHzλ  (17.5 mm) Dipole Horizontal Measurement 
 

 
a) 11 by 11 0.7 12GHzλ Dipole Antenna Pattern 

 
 

 
b) Gain Performance    c) Radiation Pattern at 10.5 GHz 
 

-Dipole Horizontal Measurement  Figure 66: 11 by 11 Square Patch HIGP with 0.7 12GHzλ
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Figure 67: 11 by 11 HIGP/ Dipole Gain Performance Comparison 

 

 

Figure 68: 11 by 11 PEC/ Dipole Gain Performance Comparison 
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Figure 69: 11 by 11 HIGP/ Dipole Radiation Pattern Comparison 
 

 

 

Figure 70: 11 by 11 PEC/ Dipole Radiation Pattern Comparison 
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4.4. Results of Broadband Antenna Measurements  

 

In the third phase, four different HIGP samples with broadband antennas were 

tested and analyzed as explained in chapter three. In this phase, first a log-periodic 

antenna, with a square patch HIGP and with a circular patch hexagonal HIGP, was 

analyzed. Second, two multi-scale triangular-patch HIGP/bow-tie antenna combinations 

were analyzed.  

The results of each measurement were analyzed in three figures as in the previous 

section. The three dimensional dipole antenna pattern is shown in the first figure (figure 

a), the gain performance of the antenna is shown in the second figure (figure b), and the 

radiation pa

4.4.1. Log-Periodic Antenna Measurements 

 

In log-periodic antenna measurements, first, a log-periodic antenna in free space 

was analyzed. Figure 71 and figure 72 show the return loss and gain measurement results. 

According to the return loss, band gaps which have better than -10 dB return loss are well 

matched such as the band gap between 4.12-4.55 GHz and the band gap between 5.4-6 

GHz. According to gain performance results, the log-periodic had so many peaks, as seen 

in figure 72a, due to the log-periodic arms of the antenna. Bandwidths of the peaks are 

approximately 2 GHz. Better gain performances are seen at 16 GHz (approximately 6 

dB), at 3 GHz and at 5 GHz (5 dB). Since the log-periodic is well-matched at 4.5 GHz, 

ttern of the antenna is given in the third figure (figure c).  
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the rad gure 72c. The log-periodic 

antenna had an approximately 6 dB gain at this frequency.  

 log-periodic, with square patch HIGP, had gain performance better than 

9 dB at

oss results in figure 

5, band gaps, such as 2-2.8 GHz, 3.4-4.2 GHz, 5.4-6 GHz and 6-6.6 GHz are well 

matche urement. For this case, peaks were 

integrated between 5 GHz-8 GHz and 9 GHz-11 GHz. The integrated peaks were seen 

due to 

iation pattern is plotted at this frequency as shown in fi

Second, the same log-periodic antenna was mounted over the square patch HIGP 

and the results are shown in figure 73 and figure 74. According to the return loss results 

in figure 73, band gaps, such as 4-4.5 GHz, 5-5.6 GHz, 6.2-9.2 GHz and 10.2-11.2 GHz 

are well matched. Same peaks as in free space are seen due to the arms of the log-

periodic. But the

 4.5 GHz. At this frequency, the log-periodic in free space had less than 6 dB gain. 

It’s seen that the square patch HIGP provides 3-dB increase on gain performance.  

Finally, the results of the log-periodic antenna, with circular patch hexagonal 

HIGP, are shown in figure 75 and figure 76. According to the return l

7

d. Figure 76 shows the results of the gain meas

the effect of the circular periodic geometry. The log-periodic, with circular patch 

hexagonal HIGP, had gain performance better than 8 dB at 5.5 GHz. It’s seen that the 

circular patch HIGP provides 2-dB increase on gain performance. 
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a) Log-Periodic Antenna in Free Space 

 

Figure 71. Log-periodic Antenna Free Space Return Loss Result 

 

 

a) Log-Periodic Horizontal Antenna Pattern 
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b) Gain Performance    c) Radiation Pattern at 4.5 GHz 
 
Figure 72. Log-periodic Antenna Free Space Measurement 
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b) Log-Periodic in Antenna Over 11 by 11 Square Patch HIGP 

 

Figur esult e 73. 11 by 11 Square HIGP/Log-periodic Antenna Return Loss R

 

a) 11 by 11 Square HIGP /Log-periodic Antenna Pattern 
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b) Gain Performance    c) Radiation Pattern at 4.5 GHz 
 

Figur ent e 74. 11 by 11 Square HIGP/Log-periodic Antenna Measurem

 
 

84



c) Log-Periodic in Antenna over Circular Patch Hexagonal HIGP 

 

Figu sult re 75. Circular Patch Hexagonal HIGP/Log-periodic Antenna Return Loss Re

 

a) C ern ircular Patch Hexagonal HIGP/Log-periodic Antenna Patt

  

b) Gain Performance    c) Radiation Pattern at 5.5 GHz 
 

Figu ent re 76. Circular Patch Hexagonal HIGP/Log-periodic Antenna Measurem
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4.4.2. Bow-tie Antenna Measurements 

 

In bow-tie antenna measurements, a 16mm-bow-tie and a 7.6mm-bow-tie were 

analyzed with a multi-scale triangular-patch HIGP. The multi-scale triangular patches 

and the same size bow-tie antenna were incorporated into a single structure. The results 

were also compared to the results of the bow-tie antenna in free space. The presented 

results include the return loss and the radiation patterns.  

The 16mm-bow-tie antenna return loss measurement is shown in figure 77. Gain 

measurements are shown in figure 78. The three dimensional antenna pattern of the 

16mm-bow-tie in free space is shown in figure 78a. The gain performance results are 

shown in figure 78b. The bow-tie is well-matched at 7 GHz and had a gain performance 

less than 5 dB. The radiation pattern at 7 GHz is shown in figure 78c.  

The multi-scale triangular-patch HIGP/16mm-bow-tie combination was then 

analyzed as shown in figure 79 and figure 80. The return loss measurement is as shown in 

figure 79. The three dimensional antenna pattern of the combination is shown in figure 

80a. Figure erformance 

of the 16mm-bow-tie is enhanced via multi-scale triangular-patch HIGP. In figure 80c, 

the radiation pattern comparison of 16mm-bow tie with HIGP, in free space, and on a 

PEC surface are shown. The multi-scale triangular-patch HIGP/16mm-bow-tie 

combination is well-matched at 7 GHz and the bow-tie with HIGP had approximately 8 

dB gain at 7 GHz. The gain performance of the HIGP/antenna combination is 3dB better 

than the gain w-tie in free gain 

perfo

80b shows the gain performance of the combination. The gain p

performance of the bo space and 4dB better than the 

rmance of the bow-tie on a PEC surface.  
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The 7.6mm-bow-tie antenna free space measurement was analyzed as in figure 81 

and figure 82. The return loss measurement results are shown in figure 81. The three 

dimens

re 82c is plotted at 8.5 GHz and 

the radi

wn in 

figure 

ional antenna pattern of the 7.6mm-bow-tie in free space is shown in figure 82a. 

In figure 82b, the gain performance of the 7.6mm-bow-tie in free space is shown. The 

best gain performance over input-match frequency band is better than 4 dB. The 

maximum return loss of the bow-tie is obtained at 8.5 GHz and the radiation pattern of 

the 7.6 bow-tie in free space is shown in figure 82c. Figu

ation pattern had better than 4 dB gain. 

The multi-scale triangular-patch HIGP/7.6mm-bow-tie combination was analyzed 

as shown in figure 83 and figure 84. The return loss measurement results are shown in 

figure 83. The multi-scale HIGP/7.6-bow-tie combination had a better return loss at 5.5 

GHz, and 8.5 GHz. The three dimensional antenna pattern of the combination is sho

84a. Figure 84b shows the gain performance of the combination. Figure 84c is 

plotted at 8.5 GHz and the gain performance of the HIGP/7.6mm-bow-tie combination is 

approximately 8 dB, whereas the gain performance of the 7.6mm-bow-tie in free space is 

less than 5 dB, and the gain performance of the 7.6mm-bow-tie on a PEC surface is 4 dB. 

The gain performance of the 7.6mm-bow-tie is enhanced at least 3 dB via multi-scale 

HIGP. 
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a) 16 mm-Bow-tie Antenna in Free Space  
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Figure 77. 16 mm-Bow-tie Return Loss Result 

 

a) Bow-tie Antenna Horizontal Pattern 
 

2 4 6 8 10 12 14 16 18
-10

-8

-6

-4

-2

0

2

4

6

  1  2  3  4  5

30 330

0
8

210

60

240

90 270

120

300

150

180
Frequency (GHz)

G
ai

n 
(d

B
)

 
b) Gain Performance    c) Radiation Pattern at 7 GHz 

 

Figure 78. 16 mm-Bow-tie Antenna Measurement 
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b) Triangular Patch HIGP with 16 mm-Bow-tie Antenna  
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Figure 79.  Loss Result  Triangular -patch HIGP/16 mm-Bow-tie Return

 

a) Tri izontal Pattern 
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b) Gain Performance    c) Radiation Pattern at 7 GHz 

 
 

Figure 80. T asurement riangular Patch HIGP/16 mm-Bow-tie Antenna Me
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c) 7.6 mm-Bow-tie Antenna in Free Space  
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Figure 81. 7.6 mm-Bow-tie Return Loss Result 

 

a) 7.6 mm-Bow-tie Antenna Pattern 
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b) Gain Performance c) Radiation Pattern at 8.5G   Hz 

Figure 82. 7.6mm-Bow-Tie Antenna Measurement 
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Figure 83.  oss Result Triangular Patch HIGP/7.6 mm-Bow-tie Return L

 

a) Triangular Patch HIGP/7.6 mm-Bow-tie Antenna Pattern 
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Figure 84. Tria rement 
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Chapter 5 Conclusion and Recommendations 

 

5.1 Chapter Overview 

 

This chapter presents the conclusions and the contributions of this research. The 

chapter concludes with recommendations for further high impedance ground plane 

studies and other antenna applications. 

 
5.2 Conclusion of Research 

 
 
 The anticipated goal of this research was to develop a conformal printed 

broadband antenna directly on a conformal high impedance ground plane, and to enhance 

the conformal antenna performance using novel electromagnetic features of high 

impedance ground planes, without the detrimental effects of absorber losses. We also 

proposed to mitigate the negative effects of a conducting ground-plane using a HIGP. 

The benefits provided by HIGPs for such resonant, narrowband antennas 

motivated us to investigate the possible application of wide-band-gap HIGPs, and to 

develop a conformal broadband antenna. To achieve this goal, the operational frequency 

band gap of the desired broadband antenna should be the overlap of its surface wave 

frequency band gap and its input-match frequency band gap. An appropriate high 

impedance ground plane can be designed to overlap the surface wave frequency band and 

input-match frequency band gap.  

In this research, the goal was to understand the affects of HIGP design 

parameters, such as patch width, gap width, substrate thickness and substrate permittivity, 
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on surface wave measurements, and narrowband antenna measurements. Similar square 

patch HIGPs were built and tested as in (Yang and Rahmat-Samii, 2003a:2691-2703) in 

order to obtain similar results. Similar HIGP structures verified surface wave and narrow 

band antenna measurement techniques, and motivated us to develop better high 

impedance ground planes. The results are also verified by Ansoft’s commercial full-wave 

solver (HFSS v.10). In light of these measurements, optimized parameters are found to be 

patch width=0.5mm, and gap with=0.4 mm. 

A log-periodic and a bow-tie antenna were chosen to develop better HIGPs. 

Optimized design parameters were used to develop an appropriate HIGP for these 

antennas. The sizes and periodicities of the ground planes were chosen such that samples 

have band-gaps that appear successively in frequency and cover the operational 

frequency band. 

Since the log-periodic antenna has a circular geometry, it seems that a circular 

patch HIGP would be more appropriate for the log-periodic antenna, However, the 

11by11 square patch HIGP provided better return loss and antenna gain. Subsequently, 

both square patch and circular patch HIGPs provided better return loss and gain 

performance. 

 Finally, a bow-tie antenna was chosen for an integrated HIGP/antenna structure. 

HIGP elements were chosen to be triangular to form a natural, commensurate blending of 

the bow-tie into the structure. Two novel multi-scale triangular patch HIGP/bow-tie 

antenna combinations also provided better return loss and gain performance. The gain 

performance of  HIGP/bow-tie combinations were 3 dB higher than the gain performance 

of the bow-ties in free space. 
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The return loss and the gain results of the HIGP-antenna combinations show that 

the HIGP provides a suitable platform for the bow-tie with removing the undesired 

effects of a PEC ground plane. The measurements indicate that the HIGP-antenna 

combination has better gain than the bow-tie in free space, and the bow-tie over a PEC 

surface. 

 

5.3 Recommendations and Advices for Future Research 

 

 Since high impedance ground planes (HIGP), or electromagnetic band gap (EBG) 

mushroom-like structures exhibit novel electromagnetic features, they lead to a wide 

range of electromagnetic applications. The following are a few recommendations for the 

research in building and testing of high impedance ground planes. 

Compactness, wider bandwidth, higher efficiency, and ease of fabrication and 

integration are always sought for electromagnetic applications. Since planar antennas 

have features above, they can be reasonably improved in different size and shapes with 

an appropriate HIGP design. 

Substrate thickness and substrate permittivity are two of the main design 

parameters. But these parameters have production constraints, since they are ordered off 

the shelf. Thus, another material, Rohacell TM 31, can be used due to the parameter 

constraints of RT/Duroid 5880 (Linton and Scanlon, 2006). Even if a Rohacell TM 31 had 

been available due to the time constraints we had no chance to use it. In Appendix A and 

B, the features of materials are shown.  
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Moreover, three-dimensional high impedance ground planes can be designed and 

built. Tunable impedance surfaces can be also developed using HIGPs. Reflective beam-

steering can be another future work. Tunable surfaces can be used as an electronic beam-

steering reflector by programming the high impedance surface (Engheta and Ziolkowski, 

2006:304).  

 Designing, patterning, plating, and testing of HIGP samples may take time. 

Equipment may fail, ordered parts may be out of stock, or the delivery time of the 

materials may be extended. Make a plan of attack, prepare a time schedule for yourself 

and stick to it. Review your designs with your colleagues and advisors to maximize your 

success. More importantly always be positive, never give up, and success will come with 

hard work and patience. 



Appendix A:  Electromagnetic Features of the RT/duroid 5880 HF Laminate 
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Appendix B:  Electromagnetic Features of the Rohacell HF  TM
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